Google earths
Author: p | 2025-04-24
Google google earth pro download full google earth pro free google earth pro free download google earth pro full google earth pro key google earth pro license key google earth pro mega google earth pro serial دانلود Google Earth Pro دانلود คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth. สำรวจ Google Earth. คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth. คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth
Google Earth or Earth Studio? - Google Earth Community
Trace Quantities of Thorium from Lanthanide Solutions by the Method of Coprecipitation. Przem. Chem. 1978, 57, 360–362. [Google Scholar]Chi, R.; Xu, Z.; Zhang, Z.; He, Z.; Ruan, Y. Review on separation and treatment of thorium resources. In Proceedings of the Conference of Metallurgists Proceedings, Vancouver, BC, Canada, 28 September–1 October 2014. [Google Scholar]Crouse, D.J.; Brown, K.B. The Amex Process for Extracting Thorium Ores with Alkyl Amines. Ind. Eng. Chem. 1959, 51, 1461–1464. [Google Scholar] [CrossRef]Amaral, J.C.B.S.; Morais, C.A. Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner. Eng. 2010, 23, 498–503. [Google Scholar] [CrossRef]Borai, E.H.; Shahr El-Din, A.M.; El-Sofany, E.A.; Sakr, A.A.; El-Sayed, G.O. Extraction and Separation of Some Naturally Occurring Radionuclides from Rare Earth Elements by Different Amines. Arab J. Nucl. Sci. Appl. 2014, 47, 48–60. [Google Scholar]Li, D.Q.; Zuo, Y.; Meng, S.L. Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. J. Alloy. Compd. 2004, 374, 431–433. [Google Scholar] [CrossRef]Crouse, D.J.; Brown, K.B. Recovery of Thorium, Uranium and Rare Earths from Monazite Sulfate Liquors by the Amine Extraction (AMEX) Process; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1959. [Google Scholar]Cox, J.J.; Ciuculescu, T.; Altman, K.; Hwozdyk, L. Technical Report on the Eco Ridge Mine Project, Elliot Lake Area, Ontario, Canada; Roscoe Postle Associates Inc.: Toronto, ON, Canada, 2012. [Google Scholar]Chunhua, Y.; Jiangtao, J.; Chunsheng, L.; Sheng, W.; Guangxia, X. Rare Earth Separation in China. Tsingshua Sci. Technol. 2006, 11, 241–247. [Google Scholar]Wang, Y.L.; Li, Y.L.; Li, D.Q.; Liao, W.P. Kinetics of thorium extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate from nitric acid medium. Hydrometallurgy 2013, 140, 66–70. [Google Scholar] [CrossRef]Zhao, J.M.; Zuo, Y.; Li, D.Q.; Liu, S.Z. Extraction and separation of cerium(IV) from nitric acid solutions containing thorium(IV) and rare earths(III) by DEHEHP. J. Alloy. Compd. 2004, 374, 438–441. [Google Scholar] [CrossRef]Liu, J.J.; Wang, W.W.; Li, D.Q. Interfacial behavior of primary amine N1923 and the kinetics of thorium(IV) extraction in sulfate media. Colloid Surf. A 2007, 311, 124–130. [Google Scholar] [CrossRef]Cianetti, C.; Danesi, P.R. Kinectics and mechanism in metal solvent extraction by some organophosphorous extractants. In Proceedings of the International Solvent Extraction Conference, ISEC, Denver, CO, USA, 26 August–2 September 1983. [Google Scholar]Biswas, S.; Pathak, P.N.; Singh, D.K.; Roy, S.B. Comparative Evaluation of Tri-n-butyl Phosphate (TBP) and Tris(2-ethylhexyl) Phosphate (TEHP) for the Recovery of Uranium from Monazite Leach Solution. Sep. Sci. Technol. 2013, 48, 2013–2019. [Google Scholar] [CrossRef]Nasab, M.E.; Sam, A.; Milani, S.A. Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 2011, 106, 141–147. [Google Scholar] [CrossRef]Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare-Earths. Int. Mater. Rev. 1992, 37, 197–248. [Google Scholar] [CrossRef]Lu,
Google Earth: Descarga Google Earth
Y.; Bi, Y.; Bai, Y.; Liao, W. Extraction and separation of thorium and rare earths from nitrate medium withp-phosphorylated calixarene. J. Chem. Technol. Biotechnol. 2013, 88, 1836–1840. [Google Scholar] [CrossRef]Rabie, K.A.; Abdel-Wahaab, S.M.; Mahmoud, K.F.; Hussein, A.E.M.; Abd El-Fatah, A.I. Monazite- Uranium Separation and Purification Applying Oxalic- Nitrate-TBP extraction. Arab J. Nucl. Sci. Appl. 2013, 46, 30–42. [Google Scholar]Zhang, Y.Q.; Xu, Y.; Huang, X.W.; Long, Z.Q.; Cui, D.L.; Hu, F. Study on thorium recovery from bastnaesite treatment process. J. Rare Earths 2012, 30, 374–377. [Google Scholar] [CrossRef]Rakesh, K.B.; Suresh, A.; Rao, P.R.V. Separation of U(VI) and Th(IV) from Nd(III) by Cross-Current Solvent Extraction Mode Using Tri-iso-amyl Phosphate as the Extractant. Solvent Extr. Ion Exch. 2015, 33, 448–461. [Google Scholar] [CrossRef]Li, Y.L.; Lu, Y.C.; Bai, Y.; Liao, W.P. Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. J. Rare Earths 2012, 30, 1142–1145. [Google Scholar] [CrossRef]Ali, A.M.I.; El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F. Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. Int. J. Miner. Process. 2007, 81, 217–223. [Google Scholar] [CrossRef]He, L.T.; Jiang, Q.; Jia, Y.M.; Fang, Y.Y.; Zou, S.L.; Yang, Y.Y.; Liao, J.L.; Liu, N.; Feng, W.; Luo, S.Z.; et al. Solvent extraction of thorium(IV) and rare earth elements with novel polyaramide extractant containing preorganized chelating groups. J. Chem. Technol. Biot. 2013, 88, 1930–1936. [Google Scholar] [CrossRef]Sato, T. The extraction of uranium (VI) from sulphuric acid solutions by di-(2-ethyl hexyl)-phosphoric acid. J. Inorg. Nucl. Chem. 1962, 24, 699–706. [Google Scholar] [CrossRef]Sato, T. The Extraction of Thorium from Hydrochloric Acid Solutions by di-(2-ethylhexyl)-phosphoric acid. Z. Für Anorg. Und Allg. Chem. 1968, 358, 296–304. [Google Scholar] [CrossRef]Sato, T. Liquid-Liquid Extraction of Rare-Earth Elements from Aqueous Acid Solutions by Acid Organophosphorus Compounds. Hydrometallurgy 1989, 22, 121–140. [Google Scholar] [CrossRef]Gupta, B.; Malik, P.; Deep, A. Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite. J. Radioanal. Nucl. Chem. 2002, 251, 451–456. [Google Scholar] [CrossRef]Karve, M.; Gaur, C. Extraction of U(VI) with Cyanex 302. J. Radioanal. Nucl. Chem. 2007, 273, 405–409. [Google Scholar] [CrossRef]Nasab, M.E.; Milani, S.A.; Sam, A. Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J. Radioanal. Nucl. Chem. 2011, 288, 677–683. [Google Scholar] [CrossRef]Belova, V.V.; Egorova, N.S.; Voshkin, A.A.; Khol’kin, A.I. Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants. Theor. Found. Chem. Eng. 2015, 49, 545–549. [Google Scholar] [CrossRef]Singh, H.; Mishra, S.L.; Vijayalakshmi, R. Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 2004, 73, 63–70. [Google Scholar] [CrossRef]Singh, S.K.; Dhami, P.S.; Tripathi, S.C.; Dakshinamoorthy, A. Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture ofVersiunile Google Earth – Google Earth
203, 255 (2017). CAS Google Scholar E. Vahidi, F. Zhao, Resour. Conserv. Recycl. 139, 178 (2018). Google Scholar European Parliament, Corporate due diligence and corporate accountability. (2021)Deutscher Bundestag, Gesetz über die unternehmerischen Sorgfaltspflichten in Lieferketten, Drucksache 19/28649, pp. 2959–2969. Deutscher Bundestag, Bonn, Germany (2021)J. Gambogi, U.S. Geological Survey, M.C. Summaries, U.S. Geological Survey, Mineral Commodity Summaries (US Government Publishing Office, Washington DC, 2021), p. 2021 Google Scholar S. Langkau, M. Erdmann, J. Ind. Ecol. 25(4), 1034 (2020). CAS Google Scholar Y. Shen, R. Moomy, R.G. Eggert, Miner. Econ. 33(1), 127 (2020). Google Scholar K.M. Goodenough, J. Schilling, E. Jonsson, P. Kalvig, N. Charles, J. Tuduri, E.A. Deady, M. Sadeghi, H. Schiellerup, A. Müller, G. Bertrand, N. Arvanitidis, D.G. Eliopoulos, R.A. Shaw, K. Thrane, N. Keulen, Ore Geol. Rev. 72, 838 (2016). Google Scholar GBM Minerals Engineering Consultants Limited: Amended & Restated Prefeasibility Study NI 43-101 Technical Report for the Norra Kärr Rare Earth Element Deposit (Report No. NI 43-101-Technical Report Norra Kärr REE-0465-RPT-014 Rev. 1, Tasman Metals Ltd (2015)A.R. Chakhmouradian, F. Wall, Elements 8(5), 333 (2012). CAS Google Scholar R. Ganguli, D.R. Cook, MRS Energy Sustain. 5(1), 6 (2018). Google Scholar H. Vogel, B. Friedrich, An Estimation of PFC Emission by Rare Earth Electrolysis, in Light Metals. ed. by O. Martin (Springer, Cham, 2018), pp. 1507–1517 Google Scholar T. Stark, I. Silin, H. Wotruba, J. Sustain. Metall. 3(1), 32 (2017). Google Scholar A. Schreiber, J. Marx, P. Zapp, J.-F. Hake, D. Voßenkaul, B. Friedrich, Resources 5(4), 32 (2016). Google Scholar P. Davris, S. Stopic, E. Balomenos, D. Panias, I. Paspaliaris, B. Friedrich, Miner. Eng. 108, 115 (2017). CAS Google Scholar P. Zapp, J. Marx, A. Schreiber, B. Friedrich, D. Voßenkaul, Resour. Conserv. Recycl. 130, 248 (2018). Google Scholar E. Vahidi, J. Navarro, F. Zhao, Resour. Conserv. Recycl. 113, 1 (2016). Google Scholar J.C.K. Lee, Z. Wen, J. Ind. Ecol. 21(5), 1277 (2017). CAS Google Scholar J.H.L. Voncken, The Ore Minerals and Major Ore Deposits of the Rare Earths, in The Rare Earth Elements: An Introduction (Springer, Cham, 2016), pp. 15–52 Google Scholar International Atomic Energy Agency (IAEA): Radiation Protection and NORM Residue Management in the Production of Rare Earths from Thorium Containing Minerals. Safety Reports Series, No. 68, STI/PUB 1512. IAEA, Vienna, Austria (2011)X. Huang, G. Zhang, A. Pan, F. Chen, C. Zheng, Earth’s Future 4(11), 532 (2016). Google Scholar W. Qifan, L. Hua, M. Chenghui, Z. Shunping, Z. Xinhua, X. Shengqing, W. Hongyan, The use and management of NORM residues in processing Bayab Obo Ores in China, in Proceedings of the 6th International Symposium on NORM VI Naturally Occurring Radioactive Material (NORM VI) (International Atomic Energy Agency), Marrakesh, Morocco, March 22–26 (2010)F. Wall, A. Rollat, R.S. Pell, Elements 13(5),. Google google earth pro download full google earth pro free google earth pro free download google earth pro full google earth pro key google earth pro license key google earth pro mega google earth pro serial دانلود Google Earth Pro دانلودVersiunile Google Earth Google Earth
Process for Separating Thorium Compounds from Monazite Sands; Iowa State University: Ames, IA, USA, 1953. [Google Scholar]Amer, T.E.; Abdella, W.M.; Wahab, G.M.A.; El-Sheikh, E.M. A suggested alternative procedure for processing of monazite mineral concentrate. Int. J. Miner. Process. 2013, 125, 106–111. [Google Scholar] [CrossRef]Chi, R.; Xu, Z. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Met. Mater Trans B 1999, 30, 189–195. [Google Scholar] [CrossRef]Kul, M.; Topkaya, Y.; Karakaya, I. Rare earth double sulfates from pre-concentrated bastnasite. Hydrometallurgy 2008, 93, 129–135. [Google Scholar] [CrossRef]Fourest, B.; Lagarde, G.; Perrone, J.; Brandel, V.; Dacheux, N.; Genet, M. Solubility of thorium phosphate-diphosphate. New J. Chem. 1999, 23, 645–649. [Google Scholar] [CrossRef]Borai, E.H.; Abd El-Ghany, M.S.; Ahmed, I.M.; Hamed, M.M.; Shahr El-Din, A.M.; Aly, H.F. Modi fi ed acidic leaching for selective separation of thorium, phosphate and rare earth concentrates from Egyptian crude monazite. Int. J. Miner. Process. 2016, 149. [Google Scholar] [CrossRef]Krebs, D.G.I.; Furfaro, D. The Kvanefjeld process. In Proceedings of the Alta 2013 Uranium-REE Conference, Perth, Australia, 25 May–1 June 2013. [Google Scholar]Pawlik, C. Recovery of rare earth elements from complex and low grade deposits. In Proceedings of the ALTA 2013 Uranium-REE Conference, Perth, Australia, 25 May–1 June 2013. [Google Scholar]Vijayalakshmi, R.; Mishra, S.L.; Singh, H.; Gupta, C.K. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80. [Google Scholar] [CrossRef]Bearse, A.E.; Calkins, G.D.; Clegg, J.W.; Filbert, J.R.B. Thorium and rare earths from monazite. Chem. Eng. Prog. 1954, 50, 235–239. [Google Scholar]Mackowski, S.J.; Raiter, R.; Soldenhoff, K.H.; Ho, E.M. Recovery of Rare Earth Elements. U.S. Patent 7,993,612 B2, 9 August 2011. [Google Scholar]Yu, B.; Verbaan, N.; Pearse, G.; Britt, S. Beneficiation and extraction of REE from GEOMEGA resources’ Montviel project. In Proceedings of the Rare Earth Elements (COM 2013), West Westmount, QC, Canada, 30 September–3 October 2013. [Google Scholar]Grimaldi, F.S. The analytical chemistry of uranium and thorium. In Proceedings of the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 8 August 1995; pp. 605–617. [Google Scholar]Tomazic, B.; Branica, M. Separation of uranium(VI) from rare earths(III) by hydrolytic precipitation. Inorg. Nucl. Chem. Lett. 1968, 4, 377–380. [Google Scholar] [CrossRef]Kang, M.J.; Han, B.E.; Hahn, P.S. Precipitation and adsorption of uranium (VI) under various aqueous conditions. Environ. Eng. Res. 2002, 7, 149–157. [Google Scholar]Abreu, R.D.; Morais, C.A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner. Eng. 2010, 23, 536–540. [Google Scholar] [CrossRef]Carter, G.; Everest, D.A.; Wells, R.A. Selective oxalate precipitation of thorium from sulfate leach solutions derived from monazite sands. J. Appl. Chem. 1960, 10, 149–155. [Google Scholar] [CrossRef]Sozanski, A. Separation ofGoogle Earth – Google Earth Education
(2-Ethyl hexyl) Phosphonic acid, mono (2-ethyl hexyl) ester (PC88A) and Tri-n-butyl phosphate (TBP). Hydrometallurgy 2009, 95, 170–174. [Google Scholar] [CrossRef]Sreenivasulu, B.; Suresh, A.; Sivaraman, N.; Vasudeva Rao, P.R. Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. J. Radioanal. Nucl. Chem. 2014, 303, 2165–2172. [Google Scholar] [CrossRef]Jain, V.K.; Pandya, R.A.; Pillai, S.G.; Shrivastav, P.S. Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase. Talanta 2006, 70, 257–266. [Google Scholar] [CrossRef]Patil, N.N.; Shinde, V.M. Extraction study of uranium(VI) and thorium(IV) salicylates with triphenylarsine oxide. J. Radioanal. Nucl. Chem. 1997, 222, 21–24. [Google Scholar] [CrossRef]Singh, H.; Gupta, C.K. Solvent Extraction in Production and Processing of Uranium and Thorium. Miner. Process. Extr. Metall. Rev. 2000, 21, 307–349. [Google Scholar] [CrossRef]Borai, E.H.; Mady, A.S. Separation and quantification of 238U, 232Th and rare earths in monazite samples by ion chromatography coupled with on-line flow scintillation detector. Appl. Radiat. Isot. Incl. Datainstrumentation Methods Use Agric. Ind. Med. 2002, 57, 463–469. [Google Scholar] [CrossRef]Jeyakumar, S.; Mishra, V.G.; Das, M.K.; Raut, V.V.; Sawant, R.M.; Ramakumar, K.L. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography. J. Sep. Sci. 2011, 34, 609–616. [Google Scholar] [CrossRef]Pin, C.; Zalduegui, J.F.S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chem. Acta 1997, 339, 79–89. [Google Scholar] [CrossRef]Soran, M.L.; Curtui, M.; Marutoiu, C. Separation of U(VI) and Th(IV) from some rare earths by thin layer chromatography with di-(2-ethylhexyl)-dithiophosphoric acid on silica gel. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2515–2524. [Google Scholar] [CrossRef]Sivaraman, N.; Kumar, R.; Subramaniam, S.; Rao, P.R.V. Separation of lanthanides using ion-interaction chromatography with HDEHP coated columns. J. Radioanal. Nucl. Chem. 2002, 252, 491–495. [Google Scholar] [CrossRef]Ostapenko, V.; Vasiliev, A.; Lapshina, E.; Ermolaev, S.; Aliev, R.; Totskiy, Y.; Zhuikov, B.; Kalmykov, S. Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J. Radioanal. Nucl. Chem. 2015, 306, 707–711. [Google Scholar] [CrossRef]Ling, L.; Wang, N.H. Ligand-assisted elution chromatography for separation of lanthanides. J. Chromatogr. A 2015, 1389, 28–38. [Google Scholar] [CrossRef]Soran, M.-L.; Hodişan, T.; Curtui, M.; Casoni, D. TLC separation of rare earths using di(2-ethylhexyl)dithiophosphoric acid as complexing reagent. J. Planar Chromatogr. Mod. Tlc 2005, 18, 160–163. [Google Scholar] [CrossRef]Korkisch, J.; Hazan, I. Anion-exchange behaviour of uranium and other elements in the presence of aliphatic di- and tricarboxylic acids. Talanta 1964, 11, 523–530. [Google Scholar] [CrossRef]Dev, K.; Pathak, R.; Rao, G.N. Sorption behaviour ofGoogle Earth or Earth Studio? - Google Earth Community
321, 47–49. [Google Scholar]Goode, J.R. Thorium and rare earth recovery in Canada: The first 30 years. Can. Metall. Q. 2013, 52, 234–242. [Google Scholar] [CrossRef]Kogel, J.E.; Trivedi, N.C.; Barker, J.M.; Krukowsky, S.T. Industrial Minerals & Rocks: Commodities, Markets and Uses, 7th ed.; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2006. [Google Scholar]Dev, S.; Sachan, A.; Dehghani, F.; Ghosh, T.; Briggs, B.R.; Aggarwal, S. Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chem. Eng. J. 2020, 397, 124596. [Google Scholar] [CrossRef]Deshmane, V.G.; Islam, S.Z.; Bhave, R.R. Selective Recovery of Rare Earth Elements from a Wide Range of E-Waste and Process Scalability of Membrane Solvent Extraction. Environ. Sci. Technol. 2020, 54, 550–558. [Google Scholar] [CrossRef] [PubMed]Rivera, R.M.; Ulenaers, B.; Ounoughene, G.; Binnemans, K.; Van Gerven, T. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Miner. Eng. 2018, 119, 82–92. [Google Scholar] [CrossRef]Reid, S.; Tam, J.; Yang, M.; Azimi, G. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Sci. Rep. 2017, 7, 15252. [Google Scholar] [CrossRef] [Green Version]Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef] [Green Version]Davris, P.; Balomenos, E.; Panias, D.; Paspaliaris, I. Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 2016, 164, 125–135. [Google Scholar] [CrossRef]Tuan, L.Q.; Thenepalli, T.; Chilakala, R.; Vu, H.H.; Ahn, J.W.; Kim, J. Leaching Characteristics of Low Concentration Rare Earth Elements in Korean (Samcheok) CFBC Bottom Ash Samples. Sustainability 2019, 11, 2562. [Google Scholar] [CrossRef] [Green Version]Abdel-Rehim, A.M. An innovative method for processing Egyptian monazite. Hydrometallurgy 2002, 67, 9–17. [Google Scholar] [CrossRef]El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F. Modified leaching and extraction of uranium from hydrous oxide cake of Egyptian monazite. Int. J. Miner. Process. 2005, 76, 101–110. [Google Scholar] [CrossRef]Lapidus, G.T.; Doyle, F.M. Selective thorium and uranium extraction from monazite: I. Single-stage oxalate leaching. Hydrometallurgy 2015, 154, 102–110. [Google Scholar] [CrossRef]Lapidus, G.T.; Doyle, F.M. Selective thorium and uranium extraction from monazite: II. Approaches to enhance the removal of radioactive contaminants. Hydrometallurgy 2015, 155, 161–167. [Google Scholar] [CrossRef]Alex, P.; Hubli, R.C.; Suri, A.K. Processing of rare earth concentrates. Rare Met. 2005, 24, 210–215. [Google Scholar]Eyal, Y.; Olander, D.R. Leaching of uranium and thorium from monazite: I. Initial leaching. Geochim. Et Cosmochim. Acta 1990, 54, 1867–1877. [Google Scholar] [CrossRef]Panda, R.; Kumari, A.; Jha, M.K.; Hait, J.; Kumar, V.; Kumar, J.R.; Lee, J.Y. Leaching of rare earth metals (REMs) from Korean monazite concentrate. J. Ind. Eng. Chem. 2014, 20, 2035–2042. [Google Scholar] [CrossRef]Shaw, K.G. AGoogle Earth: Descarga Google Earth
DC’s Legends of Tomorrow and Batwoman will also stop at nothing to save every earth that they can.Full details on how to watch the ninth installment of The Flash‘s sixth season (and the third installment of Crisis On Infinite Earths) can be found below, including start time, TV info, live stream and more:-->Full details on how to watch the ninth installment of The Flash‘s sixth season (and the third installment of Crisis On Infinite Earths) can be found below, including start time, TV info, live stream and more:Date: Tuesday, Dec. 10Time: 8:00 p.m. ETSeason: 6Episode: 9 “Crisis On Infinite Earths, Part Three”TV info: The CWLive stream: CWTV.com-->Date: Tuesday, Dec. 10Time: 8:00 p.m. ETSeason: 6Episode: 9 “Crisis On Infinite Earths, Part Three”TV info: The CWLive stream: CWTV.com“Crisis On Infinite Earths, Part Three” will air first on The CW this Tuesday night before it is uploaded to CWTV the next day – where it will be available to stream for five weeks.-->“Crisis On Infinite Earths, Part Three” will air first on The CW this Tuesday night before it is uploaded to CWTV the next day – where it will be available to stream for five weeks.Are you excited to see the third installment of the Crisis crossover? How will you be watching it? Let us know in the comments below!-->Are you excited to see the third installment of the Crisis crossover? How will you be watching it? Let us know in the comments below!. Google google earth pro download full google earth pro free google earth pro free download google earth pro full google earth pro key google earth pro license key google earth pro mega google earth pro serial دانلود Google Earth Pro دانلود คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth. สำรวจ Google Earth. คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth. คัดหางเสือเพื่อออกผจญภัยไปใน Google Earth
Versiunile Google Earth – Google Earth
Applications and challenges of rare earth resources in China. In Proceedings of the 2013 3rd International Conference on Information Science, Automation and Material System, ISAM 2013, Guangzhou, China, 13–14 April 2013; pp. 159–162. [Google Scholar]Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]Bhargava, S.K.; Ram, R.; Pownceby, M.; Grocott, S.; Ring, B.; Tardio, J.; Jones, L. A review of acid leaching of uraninite. Hydrometallurgy 2015, 151, 10–24. [Google Scholar] [CrossRef]Jaireth, S.; Hoatson, D.M.; Miezitis, Y. Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol. Rev. 2014, 62, 72–128. [Google Scholar] [CrossRef]Clow, G.; Salmon, B.; Lavigne, M.; McDonough, B.; Pelletier, P.; Vallières, D. Technical Report on Expansion Options at the Niobec Mine, Québec, Canada; IAMGOLD Corporation: Toronto, ON, Canada, 2011. [Google Scholar]Bosserman, P.J. Recovery of Cerium; Google Patents: Mountain View, CA, USA, 1995. [Google Scholar]Zou, D.; Chen, J.; Li, D.Q. Separation chemistry and clean technique of cerium(IV): A review. J. Rare Earths 2014, 32, 681–685. [Google Scholar] [CrossRef]Simandl, G.J. Geology and economic sifnificance of current and future rare earth element sources. In Proceedings of the 51st Annual Conference of Metallurgists, Niagara Falls, ON, Canada, 30 September–3 October 2012. [Google Scholar]Mowafy, A.M. Biological leaching of rare earth elements. World J. Microbiol. Biotechnol. 2020, 36, 61. [Google Scholar] [CrossRef]Driscoll, M.O. An Overview of Rare Earth Minerals Supply and Applications. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 1991; pp. 409–420. [Google Scholar]Jones, A.P.; Wall, F.; Williams, C.T. Rare Earth Minerals: Chemistry, Origin and Deposits; Springer: London, UK, 1996. [Google Scholar]Zhang, J.; Edwards, C. A Review of Rare Earth Mineral Processing Technology. In Proceedings of the 44th Annual Canadian Mineral Processors Operators Conference, Ottawa, ON, Canada, 19–21 January 2010. [Google Scholar]Chambers, D.B.; Lowe, L.M.; Feasby, D.G. Radiological aspects of naturally occuring radioactive materials (NORM) in the ore processing and production of rare earth element concentrates. In Proceedings of the 51st Annual Conference of Metallurgists, COM, Niagara Falls, ON, Canada, 30 September–3 October 2012. [Google Scholar]Feasby, D.G.; Chambers, D.B.; Lowe, L.M. Assesment and management of radioactivity in rare earth elements production. In Proceedings of the Rare Earth Elements (COM 2013), West Westmount, QC, Canada, 27–31 October 2013. [Google Scholar]Park, B.T. Management of thorium and uranium in mining and processing of rare earth minerals. In Proceedings of the 51st Annual Conference of Metallurgists, Niagara, ON, Canada, 30 September–3 October 2012; pp. 171–184. [Google Scholar]Cheng, J.; Hou, Y.; Che, L. Flotation separation on rare earth minerals and gangues. J. Rare Earths 2007, 25, 62–66. [Google Scholar]Fang, J.; Zhao, D. Separation of rare earth from tails of magnetite separation in Bao Steel’s concentrator. Met. Mine 2003,Versiunile Google Earth Google Earth
Of the fact, thorium is already a co-product of the titanium industry, and its recovery from the REE industry would represent the third most important thorium resource after titanium and uranium [124,126]. 8. ConclusionsRadioactive elements (thorium and uranium) are commonly associated with REE-bearing minerals, where the concentration depends on the mineral, the formation of the rocks, and the geographical position of the deposit. The presence of radioactive elements causes various problems in the environment and waste management. The extraction of thorium and uranium is necessary to ensure having a low radioactive product, while the loss of REE is minimized. The utilization of conventional hydrometallurgical processes such as selective precipitation, leaching, and solvent extraction for the extraction of radioactive elements is often conducted using complex industrial processes. There is a new trend of investigating new separation processes, such as the ion-exchange chromatography and membrane separation. These processes are yet at lab-scale development stage, but they seem to result in a more selective separation of Th and U from REE. Further research and development activities are required to maturate such processes and to evolve new technologies for economically viable applications at an industrial scale.The most critical parameters to be controlled in these methods are the operating conditions (pH, and temperature), reagent type, and upstream processes. Depending on the process requirements and limitations, either one- or multi-steps processing would be applied to efficiently separate radioactive elements from REE. Considering the efficiency and the cost of the process, a specific process can be selected with regard to the advantages and limitations in each process. Author ContributionsA.C.G. reviewed literature, wrote the first draft, and revised the manuscript. M.L. scientifically reviewed and edited the manuscript. A.A. scientifically reviewed and edited the manuscript. J.C. was the supervisor and also scientifically reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.FundingThis work is part of a NSERC/CRD funding supplied by Natural Science and Engineering Research Council of Canada and Niobec company in Province of Quebec of Canada.AcknowledgmentsAuthors would like to sincerely acknowledge the support of NSERC and Niobec.Conflicts of InterestThe authors declare no conflict of interest.ReferencesAlami, D. Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study. Environ. Eng. Res. 2013, 18, 211–219. [Google Scholar] [CrossRef]Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. ACS Nano 2011, 5, 8488–8505. [Google Scholar] [CrossRef] [PubMed]Chen, L.; Si, Z.C.; Wu, X.D.; Weng, D.; Ran, R.; Yu, J. Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A Review. J. Rare Earths 2014, 32, 907–917. [Google Scholar] [CrossRef]Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]Hu, T.; Deng, R.D.; Yang, X.F.. Google google earth pro download full google earth pro free google earth pro free download google earth pro full google earth pro key google earth pro license key google earth pro mega google earth pro serial دانلود Google Earth Pro دانلودGoogle Earth – Google Earth Education
The Crisis rolls on into The Flash’s sixth season with its ninth episode, “Crisis On Infinite Earths, Part 3”, and here’s how you can watch it online.-->The Crisis rolls on into The Flash’s sixth season with its ninth episode, “Crisis On Infinite Earths, Part 3”, and here’s how you can watch it online.This Tuesday night, we will see the third offering of the five-part Arrowverse crossover Crisis On Infinite Earths, and it will all happen in a special episode of The Flash.-->This Tuesday night, we will see the third offering of the five-part Arrowverse crossover Crisis On Infinite Earths, and it will all happen in a special episode of The Flash.When it comes to the Arrowverse shows’ relationship with the Crisis, the Scarlet Speedster’s show is undoubtedly the most important. Having teased The Flash’s disappearance in a mysterious Crisis for the past five years, it’s clear that it’s all been leading to this moment.-->When it comes to the Arrowverse shows’ relationship with the Crisis, the Scarlet Speedster’s show is undoubtedly the most important. Having teased The Flash’s disappearance in a mysterious Crisis for the past five years, it’s clear that it’s all been leading to this moment.Barry Allen (Grant Gustin) was always prepared for the imminent Crisis, but the first part of the crossover (which took place on Supergirl) saw him recruited by Harbinger, formerly Lyla Michaels (Audrey Marie Anderson), as The Monitor assembled a team of heroes on Earth-38 to prepare for the Anti-Monitor.-->Barry Allen (Grant Gustin) was alwaysComments
Trace Quantities of Thorium from Lanthanide Solutions by the Method of Coprecipitation. Przem. Chem. 1978, 57, 360–362. [Google Scholar]Chi, R.; Xu, Z.; Zhang, Z.; He, Z.; Ruan, Y. Review on separation and treatment of thorium resources. In Proceedings of the Conference of Metallurgists Proceedings, Vancouver, BC, Canada, 28 September–1 October 2014. [Google Scholar]Crouse, D.J.; Brown, K.B. The Amex Process for Extracting Thorium Ores with Alkyl Amines. Ind. Eng. Chem. 1959, 51, 1461–1464. [Google Scholar] [CrossRef]Amaral, J.C.B.S.; Morais, C.A. Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner. Eng. 2010, 23, 498–503. [Google Scholar] [CrossRef]Borai, E.H.; Shahr El-Din, A.M.; El-Sofany, E.A.; Sakr, A.A.; El-Sayed, G.O. Extraction and Separation of Some Naturally Occurring Radionuclides from Rare Earth Elements by Different Amines. Arab J. Nucl. Sci. Appl. 2014, 47, 48–60. [Google Scholar]Li, D.Q.; Zuo, Y.; Meng, S.L. Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. J. Alloy. Compd. 2004, 374, 431–433. [Google Scholar] [CrossRef]Crouse, D.J.; Brown, K.B. Recovery of Thorium, Uranium and Rare Earths from Monazite Sulfate Liquors by the Amine Extraction (AMEX) Process; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1959. [Google Scholar]Cox, J.J.; Ciuculescu, T.; Altman, K.; Hwozdyk, L. Technical Report on the Eco Ridge Mine Project, Elliot Lake Area, Ontario, Canada; Roscoe Postle Associates Inc.: Toronto, ON, Canada, 2012. [Google Scholar]Chunhua, Y.; Jiangtao, J.; Chunsheng, L.; Sheng, W.; Guangxia, X. Rare Earth Separation in China. Tsingshua Sci. Technol. 2006, 11, 241–247. [Google Scholar]Wang, Y.L.; Li, Y.L.; Li, D.Q.; Liao, W.P. Kinetics of thorium extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate from nitric acid medium. Hydrometallurgy 2013, 140, 66–70. [Google Scholar] [CrossRef]Zhao, J.M.; Zuo, Y.; Li, D.Q.; Liu, S.Z. Extraction and separation of cerium(IV) from nitric acid solutions containing thorium(IV) and rare earths(III) by DEHEHP. J. Alloy. Compd. 2004, 374, 438–441. [Google Scholar] [CrossRef]Liu, J.J.; Wang, W.W.; Li, D.Q. Interfacial behavior of primary amine N1923 and the kinetics of thorium(IV) extraction in sulfate media. Colloid Surf. A 2007, 311, 124–130. [Google Scholar] [CrossRef]Cianetti, C.; Danesi, P.R. Kinectics and mechanism in metal solvent extraction by some organophosphorous extractants. In Proceedings of the International Solvent Extraction Conference, ISEC, Denver, CO, USA, 26 August–2 September 1983. [Google Scholar]Biswas, S.; Pathak, P.N.; Singh, D.K.; Roy, S.B. Comparative Evaluation of Tri-n-butyl Phosphate (TBP) and Tris(2-ethylhexyl) Phosphate (TEHP) for the Recovery of Uranium from Monazite Leach Solution. Sep. Sci. Technol. 2013, 48, 2013–2019. [Google Scholar] [CrossRef]Nasab, M.E.; Sam, A.; Milani, S.A. Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 2011, 106, 141–147. [Google Scholar] [CrossRef]Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare-Earths. Int. Mater. Rev. 1992, 37, 197–248. [Google Scholar] [CrossRef]Lu,
2025-04-08Y.; Bi, Y.; Bai, Y.; Liao, W. Extraction and separation of thorium and rare earths from nitrate medium withp-phosphorylated calixarene. J. Chem. Technol. Biotechnol. 2013, 88, 1836–1840. [Google Scholar] [CrossRef]Rabie, K.A.; Abdel-Wahaab, S.M.; Mahmoud, K.F.; Hussein, A.E.M.; Abd El-Fatah, A.I. Monazite- Uranium Separation and Purification Applying Oxalic- Nitrate-TBP extraction. Arab J. Nucl. Sci. Appl. 2013, 46, 30–42. [Google Scholar]Zhang, Y.Q.; Xu, Y.; Huang, X.W.; Long, Z.Q.; Cui, D.L.; Hu, F. Study on thorium recovery from bastnaesite treatment process. J. Rare Earths 2012, 30, 374–377. [Google Scholar] [CrossRef]Rakesh, K.B.; Suresh, A.; Rao, P.R.V. Separation of U(VI) and Th(IV) from Nd(III) by Cross-Current Solvent Extraction Mode Using Tri-iso-amyl Phosphate as the Extractant. Solvent Extr. Ion Exch. 2015, 33, 448–461. [Google Scholar] [CrossRef]Li, Y.L.; Lu, Y.C.; Bai, Y.; Liao, W.P. Extraction and separation of thorium and rare earths with 5,11,17,23-tetra (diethoxyphosphoryl)-25,26,27,28-tetraacetoxycalix[4]arene. J. Rare Earths 2012, 30, 1142–1145. [Google Scholar] [CrossRef]Ali, A.M.I.; El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F. Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. Int. J. Miner. Process. 2007, 81, 217–223. [Google Scholar] [CrossRef]He, L.T.; Jiang, Q.; Jia, Y.M.; Fang, Y.Y.; Zou, S.L.; Yang, Y.Y.; Liao, J.L.; Liu, N.; Feng, W.; Luo, S.Z.; et al. Solvent extraction of thorium(IV) and rare earth elements with novel polyaramide extractant containing preorganized chelating groups. J. Chem. Technol. Biot. 2013, 88, 1930–1936. [Google Scholar] [CrossRef]Sato, T. The extraction of uranium (VI) from sulphuric acid solutions by di-(2-ethyl hexyl)-phosphoric acid. J. Inorg. Nucl. Chem. 1962, 24, 699–706. [Google Scholar] [CrossRef]Sato, T. The Extraction of Thorium from Hydrochloric Acid Solutions by di-(2-ethylhexyl)-phosphoric acid. Z. Für Anorg. Und Allg. Chem. 1968, 358, 296–304. [Google Scholar] [CrossRef]Sato, T. Liquid-Liquid Extraction of Rare-Earth Elements from Aqueous Acid Solutions by Acid Organophosphorus Compounds. Hydrometallurgy 1989, 22, 121–140. [Google Scholar] [CrossRef]Gupta, B.; Malik, P.; Deep, A. Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite. J. Radioanal. Nucl. Chem. 2002, 251, 451–456. [Google Scholar] [CrossRef]Karve, M.; Gaur, C. Extraction of U(VI) with Cyanex 302. J. Radioanal. Nucl. Chem. 2007, 273, 405–409. [Google Scholar] [CrossRef]Nasab, M.E.; Milani, S.A.; Sam, A. Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J. Radioanal. Nucl. Chem. 2011, 288, 677–683. [Google Scholar] [CrossRef]Belova, V.V.; Egorova, N.S.; Voshkin, A.A.; Khol’kin, A.I. Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants. Theor. Found. Chem. Eng. 2015, 49, 545–549. [Google Scholar] [CrossRef]Singh, H.; Mishra, S.L.; Vijayalakshmi, R. Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 2004, 73, 63–70. [Google Scholar] [CrossRef]Singh, S.K.; Dhami, P.S.; Tripathi, S.C.; Dakshinamoorthy, A. Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture of
2025-03-28Process for Separating Thorium Compounds from Monazite Sands; Iowa State University: Ames, IA, USA, 1953. [Google Scholar]Amer, T.E.; Abdella, W.M.; Wahab, G.M.A.; El-Sheikh, E.M. A suggested alternative procedure for processing of monazite mineral concentrate. Int. J. Miner. Process. 2013, 125, 106–111. [Google Scholar] [CrossRef]Chi, R.; Xu, Z. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Met. Mater Trans B 1999, 30, 189–195. [Google Scholar] [CrossRef]Kul, M.; Topkaya, Y.; Karakaya, I. Rare earth double sulfates from pre-concentrated bastnasite. Hydrometallurgy 2008, 93, 129–135. [Google Scholar] [CrossRef]Fourest, B.; Lagarde, G.; Perrone, J.; Brandel, V.; Dacheux, N.; Genet, M. Solubility of thorium phosphate-diphosphate. New J. Chem. 1999, 23, 645–649. [Google Scholar] [CrossRef]Borai, E.H.; Abd El-Ghany, M.S.; Ahmed, I.M.; Hamed, M.M.; Shahr El-Din, A.M.; Aly, H.F. Modi fi ed acidic leaching for selective separation of thorium, phosphate and rare earth concentrates from Egyptian crude monazite. Int. J. Miner. Process. 2016, 149. [Google Scholar] [CrossRef]Krebs, D.G.I.; Furfaro, D. The Kvanefjeld process. In Proceedings of the Alta 2013 Uranium-REE Conference, Perth, Australia, 25 May–1 June 2013. [Google Scholar]Pawlik, C. Recovery of rare earth elements from complex and low grade deposits. In Proceedings of the ALTA 2013 Uranium-REE Conference, Perth, Australia, 25 May–1 June 2013. [Google Scholar]Vijayalakshmi, R.; Mishra, S.L.; Singh, H.; Gupta, C.K. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80. [Google Scholar] [CrossRef]Bearse, A.E.; Calkins, G.D.; Clegg, J.W.; Filbert, J.R.B. Thorium and rare earths from monazite. Chem. Eng. Prog. 1954, 50, 235–239. [Google Scholar]Mackowski, S.J.; Raiter, R.; Soldenhoff, K.H.; Ho, E.M. Recovery of Rare Earth Elements. U.S. Patent 7,993,612 B2, 9 August 2011. [Google Scholar]Yu, B.; Verbaan, N.; Pearse, G.; Britt, S. Beneficiation and extraction of REE from GEOMEGA resources’ Montviel project. In Proceedings of the Rare Earth Elements (COM 2013), West Westmount, QC, Canada, 30 September–3 October 2013. [Google Scholar]Grimaldi, F.S. The analytical chemistry of uranium and thorium. In Proceedings of the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 8 August 1995; pp. 605–617. [Google Scholar]Tomazic, B.; Branica, M. Separation of uranium(VI) from rare earths(III) by hydrolytic precipitation. Inorg. Nucl. Chem. Lett. 1968, 4, 377–380. [Google Scholar] [CrossRef]Kang, M.J.; Han, B.E.; Hahn, P.S. Precipitation and adsorption of uranium (VI) under various aqueous conditions. Environ. Eng. Res. 2002, 7, 149–157. [Google Scholar]Abreu, R.D.; Morais, C.A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner. Eng. 2010, 23, 536–540. [Google Scholar] [CrossRef]Carter, G.; Everest, D.A.; Wells, R.A. Selective oxalate precipitation of thorium from sulfate leach solutions derived from monazite sands. J. Appl. Chem. 1960, 10, 149–155. [Google Scholar] [CrossRef]Sozanski, A. Separation of
2025-04-15(2-Ethyl hexyl) Phosphonic acid, mono (2-ethyl hexyl) ester (PC88A) and Tri-n-butyl phosphate (TBP). Hydrometallurgy 2009, 95, 170–174. [Google Scholar] [CrossRef]Sreenivasulu, B.; Suresh, A.; Sivaraman, N.; Vasudeva Rao, P.R. Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. J. Radioanal. Nucl. Chem. 2014, 303, 2165–2172. [Google Scholar] [CrossRef]Jain, V.K.; Pandya, R.A.; Pillai, S.G.; Shrivastav, P.S. Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase. Talanta 2006, 70, 257–266. [Google Scholar] [CrossRef]Patil, N.N.; Shinde, V.M. Extraction study of uranium(VI) and thorium(IV) salicylates with triphenylarsine oxide. J. Radioanal. Nucl. Chem. 1997, 222, 21–24. [Google Scholar] [CrossRef]Singh, H.; Gupta, C.K. Solvent Extraction in Production and Processing of Uranium and Thorium. Miner. Process. Extr. Metall. Rev. 2000, 21, 307–349. [Google Scholar] [CrossRef]Borai, E.H.; Mady, A.S. Separation and quantification of 238U, 232Th and rare earths in monazite samples by ion chromatography coupled with on-line flow scintillation detector. Appl. Radiat. Isot. Incl. Datainstrumentation Methods Use Agric. Ind. Med. 2002, 57, 463–469. [Google Scholar] [CrossRef]Jeyakumar, S.; Mishra, V.G.; Das, M.K.; Raut, V.V.; Sawant, R.M.; Ramakumar, K.L. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography. J. Sep. Sci. 2011, 34, 609–616. [Google Scholar] [CrossRef]Pin, C.; Zalduegui, J.F.S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chem. Acta 1997, 339, 79–89. [Google Scholar] [CrossRef]Soran, M.L.; Curtui, M.; Marutoiu, C. Separation of U(VI) and Th(IV) from some rare earths by thin layer chromatography with di-(2-ethylhexyl)-dithiophosphoric acid on silica gel. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2515–2524. [Google Scholar] [CrossRef]Sivaraman, N.; Kumar, R.; Subramaniam, S.; Rao, P.R.V. Separation of lanthanides using ion-interaction chromatography with HDEHP coated columns. J. Radioanal. Nucl. Chem. 2002, 252, 491–495. [Google Scholar] [CrossRef]Ostapenko, V.; Vasiliev, A.; Lapshina, E.; Ermolaev, S.; Aliev, R.; Totskiy, Y.; Zhuikov, B.; Kalmykov, S. Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J. Radioanal. Nucl. Chem. 2015, 306, 707–711. [Google Scholar] [CrossRef]Ling, L.; Wang, N.H. Ligand-assisted elution chromatography for separation of lanthanides. J. Chromatogr. A 2015, 1389, 28–38. [Google Scholar] [CrossRef]Soran, M.-L.; Hodişan, T.; Curtui, M.; Casoni, D. TLC separation of rare earths using di(2-ethylhexyl)dithiophosphoric acid as complexing reagent. J. Planar Chromatogr. Mod. Tlc 2005, 18, 160–163. [Google Scholar] [CrossRef]Korkisch, J.; Hazan, I. Anion-exchange behaviour of uranium and other elements in the presence of aliphatic di- and tricarboxylic acids. Talanta 1964, 11, 523–530. [Google Scholar] [CrossRef]Dev, K.; Pathak, R.; Rao, G.N. Sorption behaviour of
2025-04-19DC’s Legends of Tomorrow and Batwoman will also stop at nothing to save every earth that they can.Full details on how to watch the ninth installment of The Flash‘s sixth season (and the third installment of Crisis On Infinite Earths) can be found below, including start time, TV info, live stream and more:-->Full details on how to watch the ninth installment of The Flash‘s sixth season (and the third installment of Crisis On Infinite Earths) can be found below, including start time, TV info, live stream and more:Date: Tuesday, Dec. 10Time: 8:00 p.m. ETSeason: 6Episode: 9 “Crisis On Infinite Earths, Part Three”TV info: The CWLive stream: CWTV.com-->Date: Tuesday, Dec. 10Time: 8:00 p.m. ETSeason: 6Episode: 9 “Crisis On Infinite Earths, Part Three”TV info: The CWLive stream: CWTV.com“Crisis On Infinite Earths, Part Three” will air first on The CW this Tuesday night before it is uploaded to CWTV the next day – where it will be available to stream for five weeks.-->“Crisis On Infinite Earths, Part Three” will air first on The CW this Tuesday night before it is uploaded to CWTV the next day – where it will be available to stream for five weeks.Are you excited to see the third installment of the Crisis crossover? How will you be watching it? Let us know in the comments below!-->Are you excited to see the third installment of the Crisis crossover? How will you be watching it? Let us know in the comments below!
2025-04-21